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A transition state real wave packet approach for obtaining the cumulative
reaction probability

Kelsey M. Forsythe and Stephen K. Gray
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 24 September 1999; accepted 8 November 1999!

We show how the transition state wave packet method of Zhang and Light can be applied within a
real wave packet formalism. We also implement random superpositions into the approach, as in the
recent work of Matzkies and Manthe, which can significantly reduce the number of propagations at
higher temperatures. The net result is a very efficient approach for calculating the cumulative
reaction probability, and hence the thermal rate constant, for bimolecular chemical reactions. Full
dimensional quantum calculations, including all relevant total angular momenta, of the cumulative
reaction probability and thermal rate constant for the D1H2→HD1H are used as illustration.
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I. INTRODUCTION

The cumulative reaction probability, especially throu
the work of Miller and co-workers,1–6 has been establishe
to be a very useful tool in chemical reaction rate theo
Numerous other researchers have also utilized cumula
reaction probability ideas to obtain accurate7–13 and
approximate14–17theoretical approaches to chemical react
rates. For a bimolecular chemical reaction, the cumula
reaction probability as a function of total energy,N(E), is
defined to be the sum of all possible reactive quantum tr
sition probabilitiesPnr ,np

(E),

N~E!5 (
nr ,np

Pnr ,np
~E!, ~1!

wherenr andnp denote sets of reactant and product quant
numbers. The bimolecular thermal rate constantk(T) is a
Boltzmann average ofN(E),

k~T!5
1

2p\Qr~T!
E dEe2E/kBTN~E!, ~2!

whereQr denotes the partition function of the reactants. T
main idea is to find more efficient or direct approaches
computingN(E) than the explicit sum over all the allowe
state-to-state transitions indicated in Eq.~1!. In particular,
much progress has been made using the following, alte
tive definition for N(E) due to Miller, Schwartz, and
Tromp2:

N~E!5
~2p\!2

2
tr@d~E2H !Fd~E2H !F#, ~3!

whereH is the Hamiltonian operator andF is a flux operator
consistent with a surface separating reactant and produc
gions.

The transition state wave packet~TSWP! method, intro-
duced by Zhang and Light,7–10 is a physically appealing
time-dependent approach to calculatingN(E). It involves
propagating a set of wave packets localized in a transi
state region. The corresponding expression forN(E) in-
262
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volves a sum over transition state wave packet contributi
and, depending on the nature of the potential surface, fe
transition state wave packets than number of terms on
right-hand side of Eq.~1! might be needed. However, even
this is not the case, the use of discrete variable represe
tions ~DVRs!,18–21 and absorbing boundary condition
~ABC!,22,23 can still yield considerable computational sa
ings in relation to initial state selected wave packet~ISSWP!
propagation approaches. Of course, such ‘‘DVR-ABC
ideas, coupled with sparse matrix linear algebra metho
allow one to compute N(E) efficiently with time-
independent methods as well.3–6 There tends to be a blurring
of the distinction between time-dependent and tim
independent methodologies when common strategies and
merical techniques are employed.24 This will also be illus-
trated in the present work.

The TSWP method, in its most straightforward form
involves propagation of complex valued wave packets. M
time-independent approaches toN(E) make use of complex
Green’s functions or optical potentials and therefore also
volve complex vectors. We show here, however, that it
possible to propagate just the real part of complex wa
packets, and from just the real part infer all the releva
information for construction ofN(E). This can halve the
amount of computer time and memory required to obt
N(E) in relation to the straightforward approach. This re
resents an application of the ‘‘real wave packet’’ formalis
outlined by Gray and Balint-Kurti,24 which also makes use o
the fact, pointed out by Meijeret al.,25 that reactive fluxes
can be inferred from real wave packet propagation. Ad
tional savings, particularly for high temperatures whe
many transition state wave packets are required to conv
rate constants, is provided by adopting statistical initial co
dition sampling methods as in the work of Matzkies a
Manthe.13

Section II outlines our approach toN(E), Sec. III pre-
sents and discusses a full dimensional determination ofN(E)
and k(T) for the D1H2→HD1H reaction, and Sec. IV
concludes.
3
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II. TRANSITION STATE REAL WAVE PACKET
„TS-RWP… APPROACH

Section II A outlines the necessary aspects of the
wave packet formalism.24,25 Section II B shows how one ca
then apply Zhang and Light’s TSWP approach.7–10 Section
II C discusses aspects of TSWP initial state selection, inc
ing the idea of random superpositions.13

A. Real wave packet formalism

Two observations in Ref. 24 were~i! it is possible to
infer reaction probabilities from just the real part of an evo
ing wave packet, and~ii ! the wave packet can be generat
from a modified time-dependent Schro¨dinger equation with
the Hamiltonian operatorH replaced byf (H), where the
functional form of f (H) is chosen for convenience.@ f (H)
should, of course, be a Hermitian operator and in order
one to focus on just the real part of a wave packet one m
have a real symmetric matrix representation forf~H!.#

Let f(t)[f(x,t) be a~complex! wave packet satisfying

i\
]

]t
f~ t !5 f ~H !f~ t !. ~4!

Let f E[ f (E) denote the eigenvalues off (H). Energy ~or
equivalentlyf E) resolved observables may be estimated w
the aid of integrals of the form

I ~ f E!5E
2`

1`

dtei f Et/\f~ t !. ~5!

For example, the coordinate~x! dependence of such integra
can be used with flux approaches to calculate energy
solved reaction probabilities.25 If one can assumeI ( f E) is
one-sided inf E , i.e., there is no amplitude for eitherf E.0
or f E,0, then it is easy to showI ( f E) may also be obtained
from just the real part off(t), q(t)5Ref(t), according
to24,25

I ~ f E!52E
2`

1`

dtei f Et/\q~ t !. ~6!

The one-sided condition is not difficult to satisfy. For e
ample, with the Chebyshev iteration26 variation of the real
wave packet idea~see below! it is automatically satisfied.24

If one choosesf (H)5H, i.e., considers the usual Schr¨-
dinger equation, an efficient scheme for obtaining just
real part of the wave packet has been previously outline27

and this could be used if desired. Conceptually, this is
simplest approach. However, we believe a more efficient
proach is to assume

f ~H !52
\

t
arccos~Hs!, ~7!

where Hs5as H1bs is a scaled Hamiltonian operator~or
matrix in applications! which has eigenvalues within@21,1#,
coupled with a relatively stable form of absorption.24,27 This
results inq satisfying a simple recursion,

q(k11)5A@2Aq(k21)12Hsq
(k)#, ~8!

with k51,2, . . . denoting the discrete time stepst5kt and
whereA denotes a suitable rule for absorption in reactant
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product coordinate regions. The time stept turns out to be
arbitrary and cancels out of any expression for a reac
probability. Equation~8! is the same damped Chebyshev
eration as introduced in the time-independent work of Ma
delshtam and Taylor.28 See also the time-independent wa
packet ideas of Kouri and co-workers.29 The real wave
packet approach, as it applies to Eq.~7!, can therefore be also
viewed as a variation on these time-independent approa
that applies standard wave packet initial conditions a
analysis methods to the Chebyshev iterates.

Note if the initial conditionf(t50) is complex, there is
no difficulty in applying the formalism.24,30 Equation~8! re-
quires knowledge ofq(0) and q(1) to be initiated. If q(0)

5Ref(t50) and p(0)5Im f(t50), q(1) is obtained from
q(1)5Hsq

(0)–A12Hs
2 p(0), where the act of the square roo

operator onp(0) can be evaluated with, e.g., a Chebysh
expansion.~Typically the required number of terms in th
expansion is much less than the number of iterations requ
to compute observables.!

A new aspect of the present work is the necessity
propagate backward in time. This is accomplished throu
the following backward Chebyshev iteration,

q(k21)5A@2Aq(k11)12Hsq
(k)#, ~9!

where nowk521,22, . . . In this case one needsq(0) and
q(21) to initiate the iteration with q(21)5Hsq

(0)

1A12Hs
2 p(0).

B. Transition state wave packets

Zhang and Light,7 starting from Eq.~3!, arrived at an
expression forN(E) involving a sum over transition stat
wave packet~TSWP! contributions,

N~E!5(
i

Ni~E!, ~10!

with

Ni~E!5^c i~E!uFs0
uc i~E!&, ~11!

where the flux operatorFs0
can be written in terms of som

appropriate coordinates and its associated momentum oper
tor ps as

Fs0
5

1

2ms
@d~s2s0!ps1psd~s2s0!#. ~12!

The conditions5s0 is assumed to define a surface separ
ing reactant and product regions of space. The energy
solved TSWPs are given by

c i~E!52p\Ald~E2H !f i~ t50!

5AlE
2`

1`

dteiEt/\f i~ t !, ~13!

wheref i(t)5exp(2iHt/\)fi(t50) andl is the positive ei-
genvalue of the flux operator~see Sec. II C!. Notice that both
forward and backward propagations of the initial conditi
f i(t50) are required to evaluate Eq.~13!.

The simplest way to obtain the corresponding real wa
packet interpretation involves setting
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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d~E2H !5Ud fE

dEUd@ f E2 f ~H !#, ~14!

which allows us to replace Eq.~13! with

c i~E!5 2p\Ud fE

dEUAld @ f E2 f ~H !#f i~ t50!

5Ud fE

dEUAlE
2`

1`

dtei f Et/\f i~ t !, ~15!

where nowf i(t)5exp(2if (H)t/\) fi(t50) is a solution of
Eq. ~4!.

Using Eq.~15!, each TSWP contribution, Eq.~11!, can
be written as

Ni~E!5
l\

ms
Ud fE

dEU2

ImK E2`

1`

ei f Et/\f i~ t !dtU
3E

2`

1`

ei f Et8/\
]

]s
f i~ t8!dt8L

s5s0

, ~16!

where we have also used the definition of the flux opera
Eq. ~12!. All quantities within the inner product are fixed o
the surface defined bys5s0 and the inner product is a
integration over the remaining spatial variables.

The subsequent analysis then parallels the developm
in Ref. 25. If just the real part of each TSWP,qi(t)
5Refi(t), is available, then Eq.~6! implies that Eq.~16!
becomes

Ni~E!5
4l\

ms
Ud fE

dEU2

ImK E2`

1`

ei f Et/\qi~ t !dtU
3E

2`

1`

ei f Et8/\
]

]s
qi~ t8!dt8L

s5s0

. ~17!

Assumingf (H) is given by Eq.~7!, which implies theqi(t)
are generated by the Chebyshev iterations Eq.~8!, leads to

Ni~E!5
4las

2\3

ms~12Es
2!

ImK (
k52`

`

eiuEkqi
(k)U

3 (
k852`

`

eiuEk8
]

]s
qi

(k8)L
s5s0

, ~18!

whereuE52arccos(Es), Es5asE1bs . Equation~18! is the
main equation used in our calculation ofN(E). It is possible
to obtain similar~but not exactly the same! expressions via
Chebyshev expansion of thed(E2H) terms inN(E). This
is perhaps more in the spirit of the time-independent w
packet ideas28,29 and we outline this approach, as well as
connection with real wave packet propagation, in the App
dix.

C. Initial conditions and sampling

The TSWP method differs from standard initial state
lected wave packet~ISSWP! propagation schemes in th
choice of initial conditions. Instead of sampling from a d
Downloaded 17 Oct 2001 to 146.137.200.108. Redistribution subject to A
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tribution of asymptotic reactant states, one chooses ins
from a set of states localized in a transition state regio7

Formally, we can think of a conditions5sTS on some suit-
able reaction coordinate as defining the effective transit
state region. It is important to note that the surface defin
by s5sTS need not be the same as the surface (s5s0) used
for carrying out the flux analysis to obtain the vario
Ni(E).7

The initial TSWPs,f i(t50), are defined as

f i~x,t50!5x~s!h i~u!, ~19!

where we divide the coordinatesx into the assumed transi
tion state coordinates and the remaining degrees of freedo
u. x(s) is the eigenfunction of a flux operator,FsTS

ux&
5lux&, for which l.0. Within a finite basis or grid repre
sentation,x(s) will be strongly peaked ats5sTS. @Note that
the simple one-dimensional flux operator we use, Eq.~12!,
when diagonalized in an L2 basis, leads to just two nonzer
eigenvaluesl and 2l, with all other eigenvalues being
zero. Other forms for the flux operator may have more n
zero eigenvalues than this.31,32# The set of internal functions
$h i(u)% must provide a complete description of the coor
nates orthogonal tos, and can be vibration-rotation eigen
functions of some appropriate reduced Hamiltonian mo
~see, e.g., Sec. III B!. Of course, one can vary the choice
sTS with the hope of finding a value such that the total nu
ber of available internal states less than some maximum
ergy is a minimum. For reactions with tight transition stat
or high barriers, this number of states could be less than
total number of ISSWPs one would have to propagate
evaluate Eq.~1!.7

The simplest approach to the evaluation of Eq.~18! is to
systematically progress through the initial TSWPs giv
above, withi51, . . . , M, with i increasing such that theh i

correspond to ever higher energy internal states and to
at someM when convergence is achieved. An alternative
to use statistical sampling as in the work of Matzkies a
Manthe.13 ~See also related work by Jeffrey and Smith.33! In
the present context the idea is as follows. Equation~10! is
replaced by the average overNrs or number of random su
perpositions

Ñavg~E!5
1

Nrs
(
k51

Nrs

Ñk~E!, ~20!

where

Nk̃~E!5^c k̃~E!uFs0
uc k̃~E!&, ~21!

with eachc k̃(E) being an energy resolved state determin
via Fourier transformation of a time-dependent statef̃k(t) in
a manner analogous to Eq.~13! or Eq. ~15!. However, the
corresponding initial conditionf̃k(t50) is given by a ran-
dom superposition ofM TSWPs,

f k̃~ t50!5(
i 51

M

~21!a i
k
f i~ t50!, ~22!

with the a i
k being a random sequence of 0’s and 1’s.

Equation~21! becomes
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Nk̃5(
i , j

~21!a i
k
~21!a j

k
^c i uFs0

uc j&. ~23!

The relation13

d i j 5 lim
Nrs→`

1

Nrs
(
k51

Nrs

~21!a i
k
~21!a j

k
, ~24!

transformsNrs̃ in the limit of a large number of random
superpositions, intoN(E),

lim
Nrs→`

Ñavg~E!5(
i 51

M

^c i uFs0
uc i&5N~E!. ~25!

M, the total number of transition state wave packets e
ployed in the random superpositions, depends on the e
getic range of interest. Ideally, in certain situationsN(E) can
be estimated to some desired accuracy by propagatingNrs

,M random superpositions.

III. APPLICATION TO D 1H2

To illustrate the methodology of Sec. II, we obtain t
cumulative reaction probability and bimolecular rate co
stant for the D1H2→HD1H reaction, in three dimensions
including all relevant angular momenta. The Liu-Siegba
Truhlar-Horowitz ~LSTH! potential energy surface34–36 is
employed. This application was chosen so that we can t
compare to the accurate and extensive results of Mie
et al.37

A. Representation

In our calculations, we represent the wave packet
Hamiltonian in terms of reactant Jacobi coordinates:R, the
distance from D to the H2 center of mass;r, the H2 internu-
clear distance; and cosg, the cosine of the angle betwee
vectors associated withR andr. A body-fixed~BF!38–40rep-
resentation is employed which introducesV, the projection
of total angular momentum on theR axis. Without external
forces there are three conserved quantum numbers: the
angular momentum quantum numberJ, the projection quan-
tum number for total angular momentum on a space-fi
~SF! z-axis M, and the parity quantum numberp ~0 or 1!.
Because the results are independent ofM we suppress ex
plicit reference to this quantum number in what follow
Within the BF representation, a wave packet or its real paq
may then be expanded as39,40

qJ,p~R,r ,cosg,t;a!

5 (
V5Vmin

J

(
j >V

j max

Cj ,V
J,p ~R,r ,t !Gj ,V

J,p ~cosg;a!, ~26!

where theGj ,V
J,p are parity adapted angular functions that

volve associated Legendre polynomials in cosg and Wigner
matrices in three Euler angles~denoted collectively asa), as
in Refs. 39 and 40.Vmin in Eq. ~26! can be either 0, in which
case there areJ11 coupledV states, or 1, in which cas
there areJ coupledV states. The two possible choices f
Vmin determine the two different parity cases, with it bei
Downloaded 17 Oct 2001 to 146.137.200.108. Redistribution subject to A
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the case that if there is an odd number ofV states the parity
p50 ~even! and if there are an even number ofV states the
parity p51 ~odd!.39

The Hamiltonian operatorH may be written formally as

H5
PR

2

2mR
1

pr
2

2m r
1

~J2 j !2

2mRR2
1

j2

2m r r
2

1V~R,r ,cosg!,

~27!

wheremR5mD2mH /(mD12mH), m r5mH/2, PR andpr are
appropriate radial momentum operators associated witR
and r, andJ and j denote the~vector! total angular momen-
tum and H2 angular momentum operators.

The forward and backward propagations with Eqs.~8!
and~9!, for practical purposes, amount to updating the ch
nel coefficientsCj ,V

J,p (R,r ,t). This involves, per step, one ac
of H on a real vectorqJ,p. As in previous work,39,40 HqJ,p

breaks down into three parts. First, one has the diagonal~in j
andV) contributions from the kinetic energy: the actions
the radial kinetic operatorsPR

2/2mR andpr
2/2m r on the chan-

nel coefficients, as well as multiplication by the centrifug
terms that result from the angular kinetic energy operato
Second, one has Coriolis coupling terms, resulting from
(J2 j )2 term in Eq.~27!, which coupleV to V61. Third,
one has the action of the potential, which is diagonal inV,
but off-diagonal inj. The relevant equations may be found
numerous references, including Refs. 39 and 40. We
evenly spaced grids inR, and r, coupled with fast Fourier
sine transformations to evaluate the radial kinetic ene
terms. Rather than store large matrices of the potentia
terms of the relevant associated Legendre basis functions
simply carry out, for eachV, j, R, and r, a transformation
from the associated Legendre basis to a Gauss-Lege
quadrature41 in terms of cosg grid points, multiply the result
by the actual potential values on the grid points, and tra
form back to the associated Legendre basis.24

Table I lists the grid and basis set details associated w
our propagations. The grid details change with increasinJ
owing to the increased importance of long range effects.
found that larger grids were necessary at the intermediat
higher J values to minimize artificial reflection effects. Th
absorption parameters in Table I correspond to damping
channel packets according toA(R,r )5AR(R)Ar(r ) ~for all

TABLE I. Grid and related parameters for the three-dimensional D1H2

calculations.

Parameter J50–4 J55–25

H2 distance,r /a0 0.5–5.5 0.5–7.5
Number of grid points inr 25 37
Distance between D and the center of H2 , R /a0 0–5 0–7
Number of grid points inR 27 37
Number of~even! diatomic rotational states,j 16 16
Potential and centrifugal cutoffs,Vcut /eV 6 6
Coriolis cutoff/eV 3 3
Absorption in R starts atRa / a0 3.0 4.0
Absorption in r starts atr a / a0 3.0 4.0
Absorption strength in R,cR/a0

22 0.01 0.01
Absorption strength in r,cr /a0

22 0.01 0.01
Flux analysis point,r 0 /a0 3.0 4.0
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V and j ), with Ax5exp@2cx(x2xa)
2# wheneverx.xa with

x5R or r. Energetic cutoffs were also introduced, whi
reduce the spectral range of the Hamiltonian and there
reduce the number of iterations required.24 Note that we ap-
ply an energetic cutoff not only to the potential energy, b
also to the centrifugal terms and the magnitude of Corio
coupling terms. The latter terms tend to2` asR tends to 0.
~Care must be taken to ensure the magnitude of the cuto
sufficient so that no imbalance between the centrifugal
Coriolis terms results.!

For eachJ.0 considered, we carry out calculations f
both parity cases, corresponding to whether or notV50 is
included in the basis, as discussed below Eq.~26!. In fact, it
is important to note that there can be relatively large diff
ences in the reactivity associated with different parities, e
for J as high asJ520, with it generally being the case th
the parity such thatV50 is included in the basis yields
higher cumulative reaction probability. In addition to parit
the hydrogen atom exchange symmetry allows one to
couple j50, 2, 4, . . . andj51, 3, 5, . . . cases, which also
correspond to the nuclear para and ortho states, respecti
~Note that it is straightforward to reduce similarly the num
ber of angular grid points used in the evaluation of the act
of the potential ifj is restricted to be even or odd.42! While
the results are sensitive to the overall parity, it has b
previously demonstrated37 that cumulative reaction prob
abilities ~and rate constants! for D1H2 associated with only
ortho and only para states are equivalent to within a f
percent, so we restrict attention to the evenj ~para! case.

B. Determination of the initial TSWPs and
propagation

For simplicity, we take the reaction coordinates of Sec.
II C to be simply the H2 internuclear distance,r, for which a
moderately large value can be taken to be the condition
dividing reactants and products. The remaining variablesR,
cosg, and the Euler anglesa or, effectively, the set of al-
lowedV values for eachJ, constitute the remaining variable
u. Of course other choices fors andu, based, e.g., on certai
rotations of the original reactant Jacobi coordinates, migh
better7 both in terms of minimizing the total number o
TSWPs and in terms of minimizing the size of the grid re
resentation.

With s5r, Fr TS
is easily diagonalized numerically in

basis of a one-dimensional particle in a box wave functio
and the relevant eigenvectorx(s5r ) associated with the
positive eigenvaluel.0 of Fr TS

is obtained. This eigenvec
tor is highly localized onr 5r TS and contains a broad rang
of energies.~Note that the flux operator has some curio
properties, including the fact thatl increases in magnitud
as the basis set increases!.43,44

With u5(R, cosg, $V%), the internal statesh i(u) of
Sec. II C are then simply the eigenstates of the appropr
reduced dimensional Hamiltonian operator obtained by ho
ing r 5r TS in Eq. ~27! and omitting the associatedpr

2/2m r

kinetic energy term. IfE represents the largest total energy
interest, determined by the largest temperatureT of interest,
the optimum value of the reaction coordinate (r TS) is the one
Downloaded 17 Oct 2001 to 146.137.200.108. Redistribution subject to A
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that leads to the lowest number of TSWPs with internal
ergies~i.e., eigenvalues of the reduced dimensional Ham
tonian! less than some maximumE. Typically, we findr TS

'2.4 a0 , which is slightly larger than the actual collinea
transition state value of 1.76a0 . For J50,1,. . . ,10 andR
grid sizes of 27–37, corresponding to reduced dimens
Hamiltonian matrices ranging in size from 432 to 5402, w
used a direct diagonalization procedure~the Jacobi
method!.45 However, for largerJ it becomes computationally
prohibitive to diagonalize the matrices directly and so
used an iterative matrix eigenvalue method to obtain just
eigenvalues and eigenvectors of relevance. The particula
erative method used was the implicitly restarted Lanczos~or
more generally Arnoldi! method,46 for which there is very
robust, freely available software.47

We propagate the real part,q, of each initial TSWP~or
each random superposition of TSWPs! forward and back-
ward according to Eqs.~8! and ~9!. After each propagation
~or iteration! step, ther 5r 0 portions ofq and its derivative
with respect tor, ]q/]r , are written to files for later analysi
with Eq. ~18!. We employ an analysis surface conditionr
5r 053 – 4a0 , which is different from, and toward the prod
uct side of the condition we use to define the TSWPsr
5r TS'2.4a0 . Note that the individualNi(E) do depend on
the analysis surface position, with only their sum,N(E), if it
is converged, being invariant to any surface that separ
reactants from products.

For our main calculations, with the grid, absorption, a
other parameters listed in Table I, 400 forward and 400 ba
ward iteration steps suffice to convergeN(E), or its total
angular momentum resolved variants, to within a few p
cent. However, a difficulty arises in the deep tunneling lim
where N(E) becomes exponentially small with decreasi
energyE. This difficulty, which becomes apparent forN(E)
with magnitudes<1022, cannot even be seen on the scale
the N(E) figures we subsequently present. However, t
deep tunneling limit is important in the estimation of D1H2

rate constants withT<300 K. In principle, much longer time
~or iteration! and distance scales than those used in our m
calculations become necessary and, furthermore, one m
carefully experiment with absorption. Due to imperfectio
in the absorption, and with our current grid parameters,
example, negativeN(E) values can even result. In our ca
culations we simply omit any negativeN(E) values from our
rate constant estimations. Of course, two more accept
alternatives are:~i! to separately treat the lowE or T aspect
of the problem with more extensive calculations, or~ii ! to fit
each calculatedN(E) just above the deep tunneling lim
with an analytical tunneling formula that exhibits more co
rect behavior for lowerE. None of these alternatives is pa
ticularly appealing and the difficulty in describing the de
tunneling limit must be considered a negative aspect of b
our approach and, we suspect, most DVR-ABC approac
that rely on compact grids coupled with absorption boun
aries.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. Results

The thermal rate constant Eq.~2! can also be written as

k~T!5(
J

~2J11!kJ~T!, ~28!

where

kJ~T!5
1

Qr~T!
E dENJ~E!e2bE, ~29!

andNJ(E) denotes the cumulative reaction probability det
mined from a calculation with a specificJ. We first investi-
gate selectedJ cases. Figure 1 illustrates the cumulative
action probability forJ50. The solid points represent th
TS-RWP method of Sec. II and the curve represents a di
determination of the para~i.e., even j ) contribution to the
cumulative reaction probability@Eq. ~1!# using a more stan
dard, initial state selected wave packet~ISSWP! method. The
latter calculations were performed with larger grids and
flux based approach of Ref. 25. The TS-RWP results are
six wave packets. The ISSWP calculations required pro
gating the seven lowest initial rovibrational states of H2 ,
with the total number of allowed initial states with ener
less than 1.1 eV being 10. Thus, in this case the numbe
TSWPs was not significantly fewer than the number
ISSWPs required to obtain a reasonableN(E). However, the
ISSWP calculation involved 127R grid points, 95r grid
points, and 16g grid points. Comparing to the paramete
listed in Table I, this translates into a factor of 16 compu
tional savings with the TS-RWP approach. Naturally, so
additional effort could be invested in optimizing the grid a
other features of the ISSWP calculations and so this is p
ably a somewhat optimistic estimate. Nonetheless, individ
TSWP propagations with our approach can be quite effici
particularly for low J. For example, a singleJ50 TSWP
requires just 2 CPU minutes to be completely propagated
a 200 MHz IBM RS/6000 workstation. The CPU time al
scales linearly withJ. Figure 2 compares the TS-RW
method to the generalized Newton variational princip
~GNVP! calculations of Mielkeet al.37 for J56. One can see

FIG. 1. The J50 cumulative reaction probability for D1para-H2 calculated
with standard ISSWP approach~solid curve! and TS-RWP~solid circles!.
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how the TS-RWP results converge as the number of TSW
propagated, in order of increasing internal energy, is
creased fromM54 to 80~i.e., 2 to 40 propagations for eac
even and odd parity case!. Note that thisJ56 case involves
considerably more TSWPs than the correspondingJ50 case.
This is because the energy range considered is greater~1.6
compared to 1.1 eV! and the density of states increases d
matically as one increases energy. The agreement in Fig.
quite good and can be improved at higher total energies
including more wave packets. However, for the temperat
range considered in the calculations of thermal rate const
reported below, the energy range spanned by the first
transition state wave packets is probably sufficient.

We next consider variousJ selected thermal rate con
stants as defined in Eq.~29!. Recall~Sec. III A! that all our
calculations were for only the para contribution to the cum
lative reaction probability and, owing to the very similar r
sults previously obtained for ortho and para contributions37

we approximateNJ
ortho(E)'NJ

para(E), so thatNJ(E)5Npara
J

13Northo
J '4Npara

J in the evaluation ofkJ(T). Figure 3 con-
trasts our TS-RWP~symbols! results with the accurate
GNVP results~curves! of Mielke et al.37 for J50, 3 and 6.
One sees, in general, reasonably good agreement betwee
two calculations on the scale of the figure. ForT>500 K, the
differences between the two calculations for all threeJ cases
range between 0 and 3%. For the lowest temperature con
ered, however, ourJ50 result is more significantly in erro
by 14%. This error is, in fact, on the order of the contributi
to the rate constant from the deep tunneling limit, and
flects the convergence difficulties noted in the last paragr
of Sec. III B.

We now investigate the use ofNrs random superposi-
tions of the 40 most energetically important TSWPs~see
Sec. II C!. Our focus will be on theJ specific rate constant
kJ of Eq. ~29!. Figure 4 displays how the rate constant co
verges as one considers different numbers of random su
positions,Nrs , and contrasts this with the convergence of t
rate constant determined by considering the TSWPs ord
energetically, as in our earlier discussion of Fig. 2. Thr

FIG. 2. The J56 cumulative reaction probability for D1para-H2 ~including
both overall parities! calculated via the TS-RWP approach with variou
numbers,M, of TSWPs. The GNVP results of Mielkeet al. ~Ref. 37! are
also shown for comparison.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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different total angular momentum results,J59, 15, and 24
are displayed. While typicallyM'40 ~20 for each parity!
individual TSWP propagations are necessary to conve
each rate constant, after only a few propagations of the
dom superpositions the result is clearly close, within cert
statistical error, to the correct, converged result. This is c
from Fig. 4 in how one sees that propagations ofNrs54, 10,
and 20 superpositions yield curves that are all quite clos
one another. The error bars are given for the case of ave
ing over only four random superpositions.~Errors were esti-
mated by calculating the rate constant for a given rand
superposition and calculating the average and variance
cordingly.! In contrast, particularly at the higher temper
tures, the convergence with respect to propagating TSWP
energetic order~the isolated points! is less satisfactory. We
should note that the scale of Fig. 4 hides the fact that
random superpositions do not converge very quickly at l
temperatures when the actualJ selected rate constants are
much smaller magnitude. This is illustrated more clearly
Table II, which corresponds to the results forJ59 at selected
temperatures. One sees that theT5300 K result, even at the
level of 40 random superpositions, is in error by a factor o
in relation to the more converged result based onM580 ~40
for each parity! energetically ordered TSWP propagation
Table II also includes comparison with the accurate GN
results of Mielkeet al.37 We see that ourM580 ~40 per
parity! T5500 and 700 K results forJ59 are in excellent
agreement with those of Mielkeet al., and the 5% error of
our M580 ~40 per parity! result atT5300 K is consistent
with the difficulties previously noted in Sec. III B~and also
the discussion of Fig. 3 above!, in converging the deep tun
neling limit of N(E).

Next we present calculations of the full thermal rate co
stant. In these calculations, in order to obtain reasonable
curacy at the lower temperatures, we individually propaga
M520 ~10 per parity! energetically ordered TSWPs fo
J50–4, andM540 ~20 per parity! TSWPs forJ54–10. For
J.10, we employed instead propagations ofNrs54–20
~2–10 per parity! random superpositions.~It is very impor-

FIG. 3. The logarithm~base 10! of J selected thermal rate constants~units of
cm3 molecule21 s21) for D1H2 for J53, 6, and 9 calculated via the prese
approach~TS-RWP! and the GNVP results of Mielkeet al. ~Ref. 37!.
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tant to include these highJ states because they make a 30
to 40% contribution to the total thermal rate constant at
highest temperatures studied here.! Table III compares our
calculated thermal rate constants with the accurate GN
ones of Mielkeet al.,37 as well as experimental results.48 The
agreement between the TS-RWP and GNVP results is q
good, with the greatest error, 6%, in the TS-RWP resu
arising at the lowest temperatureT5300 K. Note only four
~two per parity! random superpositions were employed forJ
.10 for these results. Furthermore, it is important to emp
size that the statistical errors in the total rate constant co
have been reduced by including all relevantJ states in the
random superpositions,13 and this is probably the optima
way of applying the random superposition idea to estimat
rate constant. We used a different approach — random
perpositions for each individualJ — so we could also com-
pare with theJ specific results of Mielkeet al.37

The results in Table III required'400 real wave packe
propagations. We did not perform the extensiveJ.0 ISSWP
propagations necessary to determine the corresponding n
ber of propagations and actual computational effort requi
to convergek(T) with comparable accuracy. While the num
ber of asymptotic initial channels below 1.6 eV is appro
mately 4000, it is likely that significantly fewer initial state
would need to be propagated in order to obtain reason
accuracy.~Recall from our discussion of Fig. 1 that we ob
tained very goodJ50 ISSWP results using seven of the te
open channels forE<1.1 eV, which is comparable to th
number of TSWPs used.! However, we can be more confi
dent that the TS-RWP approach leads to significant com
tational savings per propagation owing to the smaller gr
and the use of just the real part of the wave packet. Furth
more, the present example, a rigorous, three-dimensional
culation including all relevantJ and Coriolis coupling, natu-
rally leads to the consideration of large numbers of TSW
Often, reasonably accurate cumulative reaction probabili
and rate constants can be obtained based on aJ50 or possi-
bly some particular full or helicity decoupledJ.0 result,
coupled withJ shifting ideas.14,37,42In such cases, far fewe
TSWPs are required.

IV. CONCLUSIONS

We presented a ‘‘transition state-real wave packe
~TS-RWP! approach for obtaining the cumulative reactio
probability N(E) which combines Zhang and Light’s trans
tion state wave packet method7 and the real wave packe
formalism of Gray and Balint-Kurti.24 Both these approache
can offer significant computational reductions in the estim
tion of cumulative reaction probabilities and the combin
approach is expected to be particularly efficient. The imp
mentation of the random superposition idea of Matzkies a
Manthe13 provides additional savings compared to summ
over individually propagated wave packets. We illustrat
the approach by estimating the cumulative reaction proba
ity and thermal rate constants for the D1H2 based on full
dimensional calculations including all relevant angular m
menta. It is also important to emphasize that the efficienc
afforded by both the transition state wave packet idea7 and
the random superposition idea13 may be considerably im-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. TheJ selective thermal rate constant for D1H2 , in units of cm3

molecule21 s21. Comparison of TS-RWP propagation results based on
rect sum over the lowestM transition states and random superposition
sults based onNrs random superpositions.~a! J59, ~b! J515, ~c! J524.
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proved by using a more appropriate coordinate system
the one we used in our illustration, e.g., one that mimics
the vicinity of the transition state, the transition state norm
coordinates.

Of course, as indicated in Sec. I, there are a variety
other approaches for obtainingN(E), as well as also ap
proaches for obtaining the rate constant without direct re
ence toN(E). Depending on the information desired, the
approaches might be less or more efficient than the appro
outlined here. It is important to realize that all approach
~including our own! tend to be somewhat involved whe
problem sizes become so large that iterative linear alge
methods are required, and it is therefore difficult to ma
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quantitative comparisons. While still involving complex ve
tors, for example, it might be that Manthe and Miller’s rea
tion probability matrix approach5 might be superior to the
present approach if only a few energiesE are of interest.
~This approach, for each energyE, leads to a matrix eigen
value problem that must be solved, perhaps by iterative
trix eigenvalue methods, for a certain number of eigenv
ues.! If only a few temperatures,T, are of interest, it might be
that a flux correlation approach would be most efficien31

~This approach involves propagation in complex time cor
sponding to a specific temperature.! We anticipate that the
present approach might be most appropriate when a w
range of energies and temperatures is of interest, and p
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bly when the problem size becomes so large that the us
just real vectors makes the problem more tractable.

There are also correlation function based approache
the cumulative reaction probability.15,16,32 The approach of
Ref. 32, for example, is similar in spirit to the Zhang a
Light7 ~and thus our own! flux-based approach. It is interes
ing to note that one could combine this correlation funct
approach32 with a simple identity or ‘‘trick’’ for obtaining
correlation functions at timet given certain information a
time t/2, as used in Refs. 49 and 50, to obtain an appro
that involves similar computational effort to the present T
RWP approach~i.e., instead of halving the wave packet si
by utilizing just the real part as we have done, this wou
involve keeping complex wave packets but halving t
propagation times.! Of course, the present TS-RWP a
proach still has more favorable computer memory requ
ments, and, in our view, is a little simpler to implemen
However, it would be very interesting if the real wave pack
ideas could be implemented within such correlation
proaches, since then even greater computational sav
mightbe achieved. It is not too difficult to cast the equatio
of Ref. 32 in real wave packet terms by invoking Eq.~14!
and using relations such as Eq.~6! or the related identity Eq
~A11! of the Appendix. In fact, an approach similar to that
our Appendix, coupled with certain Chebyshev polynom
identities such asT2k52T012TkTk , might yield both sav-
ings in terms of wave packet size and propagation time.
are currently investigating such possibilities.

While we demonstrated the feasibility of TS-RW
method with a nontrivial example, we intend to apply t
scheme to more complicated problems in the future
which the advantages of the TS-RWP should be more p
nounced relative to ISSWP formulations.

TABLE II. Convergence of the TS-RWP rate constant forJ59, in units of
cm3 molecule21 s21. Numbers in brackets indicate powers of ten.Nrs refers
to the number of random superpositions used in the calculations.M580 ~40
per parity! refers to the direct sum of the first 40 TS-RWPs. The correspo
ing accurate, GNVP results of Mielkeet al. ~Ref. 37! are also listed.

Nrs 300 K 500 K 700 K

4 2.78~219! 8.88~217! 1.08~215!
10 1.48~218! 8.78~217! 1.00~215!
20 2.04~218! 1.18~216! 1.17~215!
40 1.78~218! 1.16~216! 1.17~215!
M580 5.49~219! 1.07~216! 1.15~215!
GNVP 5.23~219! 1.06~216! 1.15~215!

TABLE III. Comparison of TS-RWP, GNVP~Ref. 37! and experimental
~Ref. 48! rate constants in units of cm3 molecule21 s21. Numbers in brack-
ets indicate powers of ten.

T~K! TS-RWP GNVP Experiment

300 2.62~216!6.01 2.76~216! 2.96~216!
500 3.13~214!6.04 3.17~214! 3.17~214!
700 2.90~213!6.07 2.92~213! 3.07~213!
900 1.09~212!6.04 1.10~212! 1.26~212!

1100 2.63~212!6.12 2.72~212! 3.39~212!
1300 4.99~212!6.25 5.32~212! 7.17~212!
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APPENDIX

An alternative, more explicitly time-independent deriv
tion of an equation very similar to Eq.~18!, is presented
here. This derivation is more in the spirit of time
independent wave packet ideas,28,29 although we outline at
the end how the result can be viewed as a special case
more explicitly time-dependent argument similar to that
the main text.

With f (E)5Es5asE1bs , Eqs.~11! and ~15! imply

Ni~E!5~2p\!2as
2l^f i~0!ud~Es2Hs!

3Fs0
d~Es2Hs!uf i~0!&. ~A1!

Expand the two delta function operators in Chebyshev po
nomialsTk(Hs),

d~Es2Hs!5 (
k50

`

ck~Es!Tk~Hs!, ~A2!

with

ck~Es!5
2

p F12
dk0

2 G E
21

11 dx

A12x2
d~Es2x!Tk~x!

5
2

p F12
dk0

2 G Tk~Es!

A12Es
2

. ~A3!

Equation~A1! then becomes

Ni~E!5~2p\!2as
2l^Di uFs0

uDi&, ~A4!

where

Di5 (
k50

`

ck~Es!~Qi
(k)1 iPi

(k)!. ~A5!

The Qi
(k) and Pi

(k) satisfy Chebyshev separate recursio
with Qi

(0)5Refi(0), Qi
(1)5HsQi

(0) generatingQi
(k) , and

Pi
(0)5Im fi(0), Pi

(1)5HsPi
(0) generating Pi

(k) . Including
dampingA of grid points in the reactant and product region
these recursions are just like Eq.~8!,

Qi
(k11)5A@2AQi

(k21)12HsQi
(k)#,

~A6!
Pi

(k11)5A@2APi
(k21)12HsPi

(k)#,

i.e., damped forward Chebyshev recursions as in the wor
Mandelshtam and Taylor.28

SinceFs0
given by Eq.~12! is imaginary in the position

representation, andN(E) is real, Eq.~A4! may be written

-
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Ni~E!5~2p\!2as
2l i @^ReDi uFs0

uIm Di&

2^Im Di uFs0
uReDi&#. ~A7!

Because ReDi and ImDi are real basis functions, the imag
nary antisymmetric property43 of the flux operator implies
^Im Di uFs0

uRe Di&5 –^ReDi uFs0
uIm Di&, so that Eq.~A7!

becomes

Ni~E!5~2p\!2as
2l2i ^ReDi uFs0

uIm Di&. ~A8!

Finally, utilizing the explicit form of the flux operator, Eq
~12!, one may show that

Ni~E!5
~2p\!2

ms
as

2l\F K ReDiU ]

]s
Im Di L

s5s0

2K ]

]s
ReDiU Im Di L

s5s0

G , ~A9!

where, as with Eq.~18!, the inner products are over all var
ables except the transition state coordinate which is h
fixed at s5s0 . More explicitly, in terms of the Chebyshe
iterates, Eq.~A9! is

Ni~E!5
~2p\!2

ms
as

2l\F K (
k50

`

ckQi
(k)U (

k850

`

ck8

]

]s
Pi

(k8)L
s5s0

2K (
k50

`

ck

]

]s
Qi

(k)U (
k850

`

ck8Pi
(k8)L

s5s0

G , ~A10!

which is very similar to Eq.~18! of the text. If one uses the
explicit forms for the Chebyshev coefficients,ck , given by
Eq. ~A3!, for example, it is not too difficult to retrieve
prefactor proportionate to the one in Eq.~18!.

There are differences between Eqs.~18! and Eq.~A10!,
but they are subtle. Equation~18! is based on the real pa
(qi

(k)) of the forward and backward propagation of a co
plex initial condition f i(0), and this propagation is gov-
erned by the modified Schro¨dinger equation, Eq.~4! with
f (H) given by Eq.~7!. In order for these propagations to b
consistent with Eqs.~4! and ~7!, it is necessary to treat th
first forward and first backward steps of the propagation i
special manner that involves evaluation of the action o
A12Hs

2 operator, as outlined in the two paragraphs bel
Eq. ~8!. Equation ~A10!, on the other hand, involves th
separate forward Chebyshev iterations of Ref i(0) and Im
f i(0), given by Qi

(k) and Pi
(k) . While one can assert tha

Qi
(k)1 iPi

(k) is also a solution of the forward Chebyshev r
cursion, it is in fact not a solution of the modified Schr¨-
dinger equation owing to howQi

(1) andPi
(1) are determined.

While the connection with Schro¨dinger equation dynamics i
thus less clear, the procedure for generatingQi

(k) andPi
(k) is

a little simpler than that for generating theqi
(k) , since one

need not worry about evaluating the action of square r
operators in evaluating the first forward and backward ste
We have also verified that Eq.~A10! gives results of com-
parable accuracy to Eq.~18!.
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The approach outlined in the main text is slightly mo
general, however, since Eq.~18! is a particular case of Eq
~17! which could be applied with, for example,f (H)5H, or
possibly some other functional mapping ofH. It is also pos-
sible to arrive at Eq.~A10! as a special case of a more ge
eral expression derived from the time-dependent argum
of the text. One simply repeats all the analysis of Sec. I
but instead of using the key relation Eq.~6!, which allows
complex wave packetsf(t) to be replaced by their real part
in Fourier integrals, one uses

I ~ f E!5E
2`

1`

dte2 i f Et/\f~ t !

54E
0

1`

dt cos~ f Et/\!@Q~ t !1 iP~ t !#. ~A11!

Q(t) and P(t) are the real parts of the forward time evol
tion, according to the modified Schro¨dinger equation, Eq.
~4!, of wave packets with initial conditionsQ(0)5Ref(0)
andP(0)5Im f(0). Notice that in both cases the initial con
dition is real. As with Eq.~6!, it must be thatI ( f E) is one-
sided. If the quantum dynamics is generated by Eq.~7!, it is
then not too difficult to recover an expression equivalent
Eq. ~A10!.
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